Contents

pgmonitor

pgmonitor is your all-in-one tool to easily create an environ-
ment to visualize the health and performance of your Post-
greSQL cluster. oL oo

Contents e
Purpose
Supported Platforms
Operating Systems L o
PostgreSQLo
Installation L
1. Prometheus
2. exporter ... oL
3. Grafana
Roadmap
Version History Lo
SPONSOTS . .« o v v e e

Legal Notices

Setting up exporters for pgmonitor

Installation L oo
Upgrading Lo
Installation on RHEL/CentOS 7

Setup
Setup on RHEL/CentOS 7
Running multiple postgres exporters (RHEL / CentOS 7)

Note for packaging (RHEL/CENTOS 7)

Installation / Setup on RHEL/CentOS 6.
Running multiple postgres exporters (RHEL / CentOS 6)

Grafana 14

Installation L L 15

Upgrading 15

With RPM Packages 15

Setup 16

Configuration Database 16

Datasource & Dashboard Provisioning 17

Setting up Prometheus for pgmonitor 17

Installation L o 17

Upgrading e 17

Installation on RHEL/CentOS 7 18

Setup 20

Setup on RHEL/CentOS 7 20

Note for packaging (RHEL/CentOS 7) 21

Setup on RHEL/CentOS 6 21
pgmonitor

pgmonitor is your all-in-one tool to easily create an environment to
visualize the health and performance of your PostgreSQL cluster.

pgmonitor combines a suite of tools to facilitate the collection and visualization
of important metrics that you need be aware of in your PostgreSQL database
and your host environment, including:

o Connection counts: how busy is your system being accessed and if connec-
tions are hanging

o Database size: how much disk your cluster is using

o Replication lag: know if your replicas are falling behind in loading data
from your primary

o Transaction wraparound: don’t let your PostgreSQL database stop work-
ing

e Bloat: how much extra space are your tables and indexes using

¢ System metrics: CPU, Memory, I/O, uptime

https://github.com/CrunchyData/pgmonitor
http://www.postgresql.org/

1.126 GB

Locks

Figure 1: pgmonitor

pgmonitor is also highly configurable, and advanced users can design their own
metrics, visualizations, and add in other features such as alerting.

Running pgmonitor will give you confidence in understanding how well your
PostgreSQL cluster is performing, and will provide you the information to make
calculated adjustments to your environment.

Contents

e Purpose

e Supported Platforms
e Operating Systems

o PostgreSQL

o Installation

¢ Roadmap

e Version History

e Sponsors

e Legal Notices

Purpose

pgmonitor is an open-source monitoring solution for PostgreSQL and the sys-
tems that it runs on. pgmonitor came from the need to provide a way to easily
create a visual environment to monitor all the metrics a database administrator
needs to proactively ensure the health of the system.

pgmonitor combines multiple open-source software packages and necessary con-
figuration to create a robust PostgreSQL monitoring environment. These in-
clude:

e Prometheus - an open-source metrics collector that is highly customizable.

e Grafana - an open-source data visualizer that allows you to generate many
different kinds of charts and graphs.

o PostgreSQL Exporter - an open-source data export to Prometheus that
supports collecting metrics from any PostgreSQL server version 9.1 and
above.

Supported Platforms

Operating Systems

o Prometheus/Alertmanager & Grafana: CentOS/RHEL 7 or greater
o Exporters (node & postgres): CentOS/RHEL 6 or greater

PostgreSQL

e pgmonitor plans to support all PostgreSQL versions that are actively sup-
ported by the PostgreSQL community. Once a major version of Post-
greSQL reaches its end-of-life (EOL), pgmonitor will cease supporting that
major version.

. 11, 10, 9.6, 9.5, 9.4

Known issues
e PostgreSQL 10+ SCRAM-SHA-256 encrypted password are not yet sup-
ported by underlying go library used by postgres_exporter.
Installation
Installation instructions for each package are provided in that packages sub-

folder. Each step in the installation process is listed here, with a link to addi-
tional to further installation instructions for each package.

https://prometheus.io/
https://grafana.com/
https://github.com/wrouesnel/postgres_exporter

1. Prometheus
2. exporter
3. Grafana
Roadmap
e Additional monitoring metrics out-of-the-box

e Improved visualizations
e Project build testing

Version History

For the full history of pgmonitor, please see the CHANGELOG.

Sponsors

£8’CRUNCHY

Enterprise PostgreSQL

Figure 2: Crunchy Data

Crunchy Data is pleased to sponsor pgmonitor and many other open-source
projects to help promote support the PostgreSQL community and software
ecosystem.

Legal Notices

Copyright © 2018 Crunchy Data Solutions, Inc.

CRUNCHY DATA SOLUTIONS, INC. PROVIDES THIS GUIDE “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

prometheus/README.md
exporter/README.md
grafana/README.md
CHANGELOG
https://www.crunchydata.com/
https://github.com/CrunchyData/
https://github.com/CrunchyData/

OF NON INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Crunchy, Crunchy Data Solutions, Inc. and the Crunchy Hippo Logo are trade-
marks of Crunchy Data Solutions, Inc.

Setting up exporters for pgmonitor

The exporters below can be set up on any Linux-based system, but the instruc-
tions below use RHEL/CentOS 7.

o Installation

e Setup

e« RHEL / CentOS 7
« RHEL / CentOS 6

Installation
Upgrading
1.x-> 2.x

¢ See CHANGLOG.md file for full details on what has changed in this major
version upgrade.

e Many of the metric names in node_ exporter v0.16.0 have had their names
changed. All of the ones that pgmonitor uses in alerting and grafana
related to CPU, Memory and Disk have been renamed. All files provided
by pgmonitor 2.x have been updated to account for these changes so please
either use these new files or see what has changed an incorporate them
into your environment.

e The symlink for the postgres exporter sysconfig file is no longer being
used. The symlink is removed as part of the upgrade, so the default
postgres__exporter service that previously used this may have to be up-
dated. See the Enable Services section below for the correct systemctl
command to create the new service name. The old service can then be
disabled /removed.

e The ccp_is_ready check has been removed and pgmonitor now uses
the pg_up check built into postgres_exporter. Prometheus alerting and
grafana dashboards have been updated to account for this.

e A new metric ccp_is_in_recovery is used to help determine the pri-
mary /replica state of a given database in the grafana dashboards. The
query for this can be found in queries_ common.sql

Installation on RHEL/CentOS 7
With RPM Packages There are RPM packages available to Crunchy Data
customers through the Crunchy Customer Portal.

If you install the below available packages with RPM, you can continue reading
at the Setup section.

Package Name Description

node__exporter Base package for node_exporter

postgres__exporter Base package for postgres_ exporter

pgmonitor-pg# #-extras Crunchy optimized configurations for postgres exporter. Note that ea

pgmonitor-node__exporter-extras Crunchy optimized configurations for node_exporter

pg_ bloat_ check Package for pg_ bloat_ check script

Available Packages

Without Packages For non-package installations, the exporters &
pg_bloat_ check can be downloaded from their respective repositories:

Library

node__exporter https://github.com/prometheus/node_ exporter/releases
postgres__exporter https://github.com/wrouesnel /postgres_exporter/releases

pg_bloat_ check https://github.com /keithfd/pg_bloat_ check

User and Configuration Directory Installation You will need to create
a user named ccp_monitoring which you can do with the following command:

sudo useradd ccp_monitoring
Create a folder in /var/1ib/ and set its permissions as such:

sudo mkdir /var/lib/ccp_monitoring
sudo chmod 0700 /var/lib/ccp_monitoring
sudo chown ccp_monitoring /var/lib/ccp_monitoring

https://www.crunchydata.com
https://access.crunchydata.com/

Configuration File Installation All executables are expected to be in the
/usr/bin directory. A base node_exporter systemd file is expected to be in
place already. An example one can be found here:

https://github.com/lest /prometheus-rpm/tree/master/node_exporter

The files contained in this repository are assumed to be installed in the following
locations with the following names. In the instructions below, you should replace
a double-hash (##) with the two-digit major version of PostgreSQL you are
running (ex: 95, 96, 10, etc.).

node__exporter Thenode_ exporter data directory should be /var/1ib/ccp_monitoring/node_export
and owned by the ccp_monitoring user. You can set it up with:

sudo mkdir /var/lib/ccp_monitoring/node_exporter
sudo chmod 0700 /var/lib/ccp_monitoring/node_exporter
sudo chown ccp_monitoring /var/lib/ccp_monitoring/node_exporter

The following pgmonitor configuration files should be placed according to the
following mapping;:

pgmonitor Configuration File System Location

node/crunchy-node-exporter-service-el7.conf /etc/systemd/system/node_exporter.service.d/crunc

node/sysconfig.node__exporter /etc/sysconfig/node_exporter

postgres__exporter The following pgmonitor configuration files should be
placed according to the following mapping;:

pgmonitor Configuration File System Location

crontab.txt /etc/postgres_exporter/##/crontab.txt
postgres/crunchy_postgres_exporter@.service /usr/lib/systemd/system/crunchy_postgres_export

postgres/sysconfig.postgres_exporter_ pg## /etc/sysconfig/postgres_exporter_pgi#

postgres/setup_ pg##.sql /etc/postgres_exporter/##/setup_pg##.sql
postgres/queries_ pg##.yml /etc/postgres_exporter/##/queries_pg#i#.yml
postgres/queries__common.yml /etc/postgres_exporter/##/queries_common.yml
postgres/queries_ per__db.yml /etc/postgres_exporter/##/queries_per_db.yml
postgres/queries_bloat.yml /etc/postgres_exporter/##/queries_bloat.yml

Setup
Setup on RHEL/CentOS 7

Service Configuration The following files contain defaults that should en-
able the exporters to run effectively on your system for the purposes of using
pgmonitor. You should take some time to review them.

If you need to modify them, see the notes in the files for more details and recom-
mendations: - /etc/systemd/system/node_exporter.service.d/crunchy-node-exporter-service-el’
- /etc/sysconfig/node_exporter - /etc/sysconfig/postgres_exporter_pgh#

Note that /etc/sysconfig/postgres_exporter_pg## is the default sysconfig
file for monitoring the database running on the default port 5432 and connects
to the “postgres” database. If you've installed the pgmonitor setup to a different
database, modify this file accordingly or make a new one. If you make a new one,
ensure the service name you enable references this file (see the Enable Services
section below).

Database Configuration

General Configuration First, make sure you have installed the PostgreSQL
contrib modules. You can install them with the following command:

sudo yum install postgresql##-contrib

Where ## corresponds to your current PostgreSQL version. For PostgreSQL 10
this would be:

sudo yum install postgresqllO-contrib

You will need to modify your postgresql.conf configuration file to tell Post-
greSQL to load shared libraries. In the default setup, this file can be found at
/var/lib/pgsql/10/data/postgresql.conf.

Modify your postgresql.conf configuration file to add the following shared
libraries

shared_preload_libraries = 'pg_stat_statements,auto_explain'

You will need to restart your PostgreSQL instance for the change to take ef-
fect. Neither of the above extensions are used outside of the postgres database
itself, but we find they are extremely useful to have loaded and available in the
database when further diagnosis of issues is required.

For each database you are planning to monitor, you will need to run the following
command as a PostgreSQL superuser:

CREATE EXTENSION pg_stat_statements;

If you want the pg_stat_statements extension to be available in all newly cre-
ated databases, you can run the following command as a PostgreSQL superuser:

psql -d templatel -c "CREATE EXTENSION pg_stat_statements;"

Query File Description
setup_ pg##.sql Creates ccp_monitoring role with all necessary grants. Creates any extra monitc
queries_ bloat.yml postgres__exporter query file to allow bloat monitoring.

queries__common.yml postgres_exporter query file with minimal recommended queries that are commo:

queries_per_db.yml postgres_exporter query file with queries that gather per databse stats. WARNII

queries_ pg#+#.yml postgres _exporter query file for queries that are specific to the given version of P

Monitoring Setup Install the setup_pg##.sql script to all databases you
will be monitoring in the cluster. The queries common to all postgres versions
are contained in queries_common.yml. Major version specific queries are con-
tained in a relevantly named file. Queries for more specialized monitoring are
contained in additional files. postgres exporter only takes a single query file
as an argument for custom queries, so cat together the queries necessary into a
single file.

For example, to use just the common queries for PostgreSQL 9.6 do the follow-
ing. Note the location of the final queries file is based on the major version
installed. The exporter service will look in the relevant version folder in the
/etc/postgres_exporter directory:

cd /etc/postgres_exporter/96
cat queries_common.yml queries_per_db.yml queries_pg96.yml > queri
psql -f /etc/postgres_exporter/96/setup_pg96.sql

As another example, to include queries for PostgreSQL 10 as well as bloat do
the following:

cd /etc/postgres_exporter/10
cat queries_common.yml queries_per_db.yml queries_pglO.yml queries
psql -f /etc/postgres_exporter/10/setup_pgl0.sql

For replica servers, the setup is the same except that the setup_ pg#+#.sql file

does not need to be run since writes cannot be done there and it was already
run on the master.

10

es.yml

_bloat.yml > queries.y

Access Control: GRANT statements

The ccp_monitoring database role (created by running the “setup_ pg#+.sql”
file above) must be allowed to connect to all databases in the cluster. To do
this, run the following command to generate the necessary GRANT statements:

SELECT 'GRANT CONNECT ON DATABASE "' || datname || '" TO ccp_monitoring;'
FROM pg_database
WHERE datallowconn = true;

This should generate one or more statements similar to the following:
GRANT CONNECT ON DATABASE "postgres" TO ccp_monitoring;

Bloat setup

Run script on the specific database(s) you will be monitoring bloat for in the
cluster. See special note in crontab.txt concerning a superuser requirement for
using this script

psql -d postgres -c "CREATE EXTENSION pgstattuple;"
/usr/bin/pg_bloat_check.py -c "host=localhost dbname=postgres user=postgres' --create_st:
psql -d postgres -c "GRANT SELECT,INSERT,UPDATE,DELETE,TRUNCATE ON bloat_indexes, bloat_

The /etc/postgres_exporter/##/crontab. txt file is meant to be a guide for
how you setup the ccp_monitoring crontab. You should modify crontab entries
to schedule your bloat check for off-peak hours. This script is meant to be run
at most, once a week. Once a month is usually good enough for most databases
as long as the results are acted upon quickly.

The script requires being run by a database superuser by default since it must
be able to run a scan on every table. If you’d like to not run it as a superuser,
you will have to create a new role that has read permissions on all tables in all
schemas that are to be monitored for bloat. You can then change the user in
the connection string option to the script.

Enable Services

sudo systemctl enable node_exporter
sudo systemctl start node_exporter
sudo systemctl status node_exporter

To most easily allow the possibility of multiple postgres exporters, running mul-
tiple major versions of PostgreSQL, and to avoid maintaining many similar

11

service files, a systemd template service file is used. The name of the syscon-
fig EnvironmentFile to be used by the service is passed as the value after the
“@” and before “service” in the service name. The default exporter’s Environ-
mentFile is named “postgres_exporter pg##” and tied to the major version
of postgres that it was installed for. Be sure to replace the ## in the below
commands first!

sudo systemctl enable crunchy_postgres_exporter@postgres_exporter_pg##.service
sudo systemctl start crunchy_postgres_exporter@postgres_exporter_pg##
sudo systemctl status crunchy_postgres_exporter@postgres_exporter_pgH#

Running multiple postgres exporters (RHEL / CentOS 7)

Certain metrics are not cluster-wide, so in that case multiple exporters must be
run to collect all relevant metrics. The queries_ per db.yml file contains these
queries and the secondary exporter(s) can use this file to collect those metrics
and avoid duplicating cluster-wide metrics. Note that some other metrics are
per database as well (bloat). You can then define multiple targets for that job
in Prometheus so that all the metrics are collected together. Note that the
“setup_ *.sql” file does not need to be run on these additional databases.

cd /etc/postgres_exporter/96
cat queries_per_db.yml queries_bloat.yml > queries_mydb.yml

You’ll need to create a new sysconfig environment file for the second exporter
service. You can just copy the existing ones and modify the relevant lines,
mainly being the port, database name, and query file

cp /etc/sysconfig/postgres_exporter_pg## /etc/sysconfig/postgres_exporter_mydb

OPT="--web.listen-address=0.0.0.0:9188 —-extend.query-path=/etc/postgres_exporter/96/que:
DATA_SOURCE_NAME="postgresql://ccp_monitoring@localhost:5432/mydb?sslmode=disable"

Since a systemd template is used for the postgres exporter services, all you
need to do is pass the sysconfig file name as part of the new service name.

sudo systemctl enable crunchy_postgres_exporter@postgres_exporter_mydb.service
sudo systemctl start cruncy_postgres_exporter@postgres_exporter_mydb
sudo systemctl status crunchy_postgres_exporter@postgres_exporter_mydb

Lastly, update the Prometheus auto.d target file to include the new exporter in
the same one you already had running for this system

12

Note for packaging (RHEL/CENTOS 7)

The service override file(s) must be placed in the relevant drop-in folder to
override the default service files.

/ete/systemd/system/node__exporter.service.d/*.conf

After a daemon-reload, systemd should automatically find these files and the
crunchy services should work as intended.

Installation / Setup on RHEL/CentOS 6

The node__exporter and postgres_ exporter services on RHELG6 require the “dae-
monize” package that is part of the EPEL repository. This can be turned on
by running:

sudo yum install epel-release
All setup for the exporters is the same on RHEL6 as it was for 7 with the

exception of the base service files. Whereas RHEL7 uses systemd, RHELG6 uses
init.d. The Crunchy RHEL6 packages will create the base service files for you

/ete/init.d/crunchy-node-exporter /etc/init.d/crunchy-postgres-exporter

Note that these service files are managed by the package and any changes you
make to them could be overwritten by future updates. If you need to customize
the service files for RHELG, it’s recommended making a copy and editing/using
those.

Or if you are setting this up manually, the repository file locations and expected
directories are:

node/crunchy-node-exporter-el6.service -> /etc/init.d/crunchy-postgres-exporter
postgres/crunchy-postgres-exporter-el6.service -> /etc/init.d/crunchy-postgres-exporter

/var/run/postgres_exporter/
/var/log/postgres_exporter/ (owned by postgres_exporter service user)

/var/run/node_exporter/
/var/log/node_exporter/ (owned by node_exporter service user)

The same /etc/sysconfig files that are used in RHEL7 above are also used in
RHELS, so follow guidance above concerning them and the notes that are con-
tained in the files themselves.

Once the files are in place, set the service to start on boot, then manually start
it

13

sudo
sudo
sudo

sudo
sudo
sudo

chkconfig crunchy-node-exporter on
service crunchy-node-exporter start
service crunchy-node-exporter status

chkconfig crunchy-postgres-exporter on
service crunchy-postgres-exporter start
service crunchy-postgres-exporter status

Running multiple postgres exporters (RHEL / CentOS 6)

If you need to run multiple postgres exporter services, follow the same instruc-
tions as RHEL / CentOS 7 for making a new queries_ XX.yml file to only gather
database specific metrics. Then follow the steps below:

Make a copy of the /etc/sysconfig file with a new name

Update —web.listen-address in the new sysconfig file to use a new port
number

Update —extend.query-path in the new sysconfig file to point to the new
query file generated

Update the DATA__SOURCE_NAME in the new sysconfig file to point
to the name of the database to be monitored

Make a copy of the /etc/init.d/crunchy-postgres-exporter with a new
name

Update the SYSCONFIG variable in the new init.d file to match the new
sysconfig file

Update the Prometheus auto.d target file to include the new exporter in
the same one you already had running for this system

Remaining steps to initialize service at boot and start it up should be the same
as above for the default service.

Grafana

There are RPM packages available to Crunchy Data customers through the
Crunchy Customer Portal. Otherwise the Grafana RPM Package can be down-
loaded and installed from https://grafana.com/grafana/download. There is no
difference between the Crunchy provided package and the one directly from
Grafana.

14

https://www.crunchydata.com
https://access.crunchydata.com/

Installation
Upgrading

If you'd like to take advantage of the new provisioning system in Grafana 5
provided by pgmonitor 2.x, we recommend either renaming or deleting your
existing datasources and dashboards so there are no issues when the provisioned
versions are imported.

When upgrading from pgmonitor 1.x to 2.x, note that many of the system related
metric names from node_exporter have had their names changed. The new
graphs provided for Grafana 5+ have taken these new names into account. Also,
the top level PostgreSQL Overview dashboard no longer uses the ccp_is_ready
metric, so you will have to include some new postgres__exporter metrics for that
dashboard to work.

With RPM Packages
There are RPM packages available to Crunchy Data customers through the
Crunchy Customer Portal.

If you install the below available packages with RPM, you can continue reading
at the Setup section.

Package Name Description

grafana Base package for grafana

pgmonitor-grafana-extras Crunchy configurations for datasource & dashboard provisioning

Available Packages

Without Packages Create the following directories on your grafana server if
they don’t exist:

mkdir -p /etc/grafana/provisioning/datasources mkdir -p /etc/grafana/provisioning/dashboards
mkdir -p /etc/grafana/crunchy_ dashboards

pgmonitor Configuration File System Location

grafana/crunchy grafana_datasource.yml /etc/grafana/provisioning/datasources/datasource.y

grafana/crunchy_ grafana_ dashboards.yml /etc/grafana/provisioning/dashboards/dashboards.ym

15

https://www.crunchydata.com
https://access.crunchydata.com/

Review the crunchy grafana_ datasource.yml file to ensure it is looking at your
Prometheus database. The included file assumes Grafana and Prometheus
are running on the same system. DO NOT CHANGE the datasource “name”
if you will be using the dashboards provided in this repo. They assume
that name and will not work otherwise. Any other options can be changed
as needed. Save the crunchy_ grafana_ datasource.yml file and rename to
/ete/grafana/provisioning/datasources/datasources.yml. Restart grafana and
confirm through the web interface that the datasource was provisioned and
working.

Review the crunchy grafana_dashboards.yml file to ensure it’s looking
at where you stored the provided dashboards. By default it is look-
ing in /etc/grafana/crunchy dashboards. Save this file and rename to
/etc/grafana/provisioning/dashboards/dashboards.yml. Restart grafana so it
picks up the new config.

Save all of the .json dashboard files to the /etc/grafana/crunchy dashboards
folder.

Setup
Configuration Database

By default Grafana uses an SQLite database to store configuration and dash-
board information. We recommend using a PostgreSQL database for better long
term scalability. Before doing any further configuration, including changing the
default admin password, set the grafana.ini to point to a postgresql instance
that has a database created for it.

In psql run the following:

CREATE ROLE grafana WITH LOGIN; CREATE DATABASE grafana; AL-
TER DATABASE grafana OWNER TO grafana; \password grafana

You may also need to adjust your pg hba.conf to allow grafana to connect to
your database.

In your grafana.ini, set the following options at a minimum with relevant values:
[database]

type = postgres host = 127.0.0.1:5432 name = grafana user = grafana password

[A5113

= mypassword”“”
Now enable and start the grafana service

sudo systemctl enable grafana-server sudo systemctl start grafana-server sudo
systemctl status grafana-server

16

Navigate to the web interface: https://<ip-address>:3000. Log in with ad-
min/admin (be sure to change the admin password) and check settings to ensure
the postgres options have been set and are working.

Datasource & Dashboard Provisioning

Grafana 5.x provides the ability to automatically provision datasources and
dashboards via configuration files instead of having to manually import
them either through the web interface or the API. Note that provisioned
dashboards can no longer be directly edited and saved via the web interface.
See the Grafana documentation for how to edit/save provisioned dashboards:
http://docs.grafana.org/administration /provisioning /#making-changes-to-
a-provisioned-dashboard. If you’d like to customize these dashboards, we
recommend first adding them via provisioning then exporting and importing
manually via the web interface.

The extras package takes care of putting all these files in place. If you did not
use the crunchy package to install grafana, see the additional instructions above.
Once that is done, the only additional setup that needs to be done is to set the
“provisioning” option in the grafana.ini to point to the top level directory if it
hasn’t been done already. If you're upgrading from Grafana 4.x to 5.x, you will
have to add the “provisioning” option to the [paths] section of the grafana.ini
file. Once that is done, just restart grafana and all datasources and dashboards
should appear.

[paths] provisioning = /etc/grafana/provisioning

Setting up Prometheus for pgmonitor

Prometheus can be set up on any Linux-based system, but the instructions
below use RHEL/CentOS 7.

o Installation
e Setup
e« RHEL / CentOS 7

Installation
Upgrading
When upgrading from pgmonitor 1.x to 2.x, note that the alerting rules for

node__exporter metrics have had many of their names changed. If you've
changed the provided alerting rules file, installing the new package should

17

create a file called /etc/prometheus/crunchy-alert-rules.yml.rpmnew and
not overwrite your current file. You should be able to copy the new rules as
needed from there.

Installation on RHEL/CentOS 7
With RPM Packages There are RPM packages available to Crunchy Data
customers through the Crunchy Customer Portal.

If you install the below available packages with RPM, you can continue reading
at the Setup section.

Package Name Description
alertmanager Base package for the Alertmanager
prometheus2 Base package for Prometheus 2.x

pgmonitor-alertmanager-extras Custom Crunchy configurations for Alertmanager

pgmonitor-prometheus-extras Custom Crunchy configurations for Prometheus

Available Packages

Without Crunchy Data Packages For installations without using packages
provided by Crunchy Data, we recommend using the repository maintained at
https://github.com/lest /prometheus-rpm. Instructions for setup and installa-
tion are contained there. Note this only sets up the base service. The additional
files and steps for pgmonitor still need to be set up as instructed below.

Or you can also download Prometheus and Alertmanager from the original site
at https://prometheus.io/download. Note that no base service setup is provided
here, just the binaries.

Minimum Versions pgmonitor assumes to be using Prometheus 2.x. We
recommend to always use the latest minor version of Prometheus.

User and Configuration Directory Installation You will need to create
a user named ccp_monitoring which you can do with the following command:

sudo useradd ccp_monitoring

Create a folder in /var/1ib/ and set its permissions as such:

18

https://www.crunchydata.com
https://access.crunchydata.com/
https://prometheus.io/
https://prometheus.io/images/alerting/alertmanager/
https://prometheus.io/download

sudo mkdir /var/lib/ccp_monitoring
sudo chmod 0700 /var/lib/ccp_monitoring
sudo chown ccp_monitoring /var/lib/ccp_monitoring

Configuration File Installation The files contained in this repository are
assumed to be installed in the following locations with the following names:

Prometheus

The Prometheus data directory should be /var/1ib/ccp_monitoring/prometheus
and owned by the ccp_monitoring user. You can set it up with:

sudo mkdir /var/lib/ccp_monitoring/prometheus
sudo chmod 0700 /var/lib/ccp_monitoring/prometheus
sudo chown ccp_monitoring /var/lib/ccp_monitoring/prometheus

The following pgmonitor configuration files should be placed according to the
following mapping;:

pgmonitor Configuration File System Location

crunchy-prometheus-service-el7.conf /etc/systemd/system/prometheus.service.d/crunchy-prometh
sysconfig.prometheus /etc/sysconfig/prometheus
crunchy-prometheus.yml /etc/prometheus/crunchy-prometheus.yml

auto.d/ProductionDB.yml.example /etc/prometheus/auto.d/ProductionDB.yml.example

crunchy-alertmanager.yml /etc/prometheus/crunchy-alertmanager.yml
crunchy-alert-rules.yml /etc/prometheus/crunchy-alert-rules.yml
Alertmanager

The Alertmanager data directory should be /var/lib/ccp_monitoring/alertmanager
and owned by the ccp_monitoring user. You can set it up with:

sudo mkdir /var/lib/ccp_monitoring/alertmanager
sudo chmod 0700 /var/lib/ccp_monitoring/alertmanager
sudo chown ccp_monitoring /var/lib/ccp_monitoring/alertmanager

The following pgmonitor configuration files should be placed according to the
following mapping;:

19

pgmonitor Configuration File System Location

crunchy-alertmanager-service-el7.conf /etc/systemd/system/alertmanager.service.d/crunchy-aler

sysconfig.alertmanager /etc/sysconfig/alertmanager

Setup
Setup on RHEL/CentOS 7

Service Configuration The following files contain defaults that should en-
able Prometheus and Alertmanager to run effectively on your system for the
purposes of using pgmonitor. You should take some time to review them.

If you need to modify them, see the notes in the files for more details and
recommendations:

o /etc/systemd/system/prometheus.service.d/crunchy-prometheus-service-el7.conf
o /etc/systemd/system/alertmanager.service.d/crunchy-alertmanager-service-el7.conf

The below files contain startup properties for Prometheues and Alertmanager.
Please review and modify these files as you see fit:

e /etc/sysconfig/prometheus
e /etc/sysconfig/alertmanager

The below files dictate how Prometheus and Alertmanager will behave at run-
time for the purposes of using pgmonitor. Please review each file below and
follow the instructions in order to set things up:

File Instructions

/etc/prometheus/crunchy-prometheus.yml Modify to set scrape interval if different from the defau
/etc/prometheus/crunchy-alertmanager.yml Setup alert target (e.g., SMTP, SMS, etc.), receiver an
/etc/prometheus/crunchy-alert-rules.yml Update rules as needed. Default Prometheus config exj

/etc/prometheus/auto.d/*.yml You will need at least one file with a final .yml extensi

Enable Services To enable and start Prometheus as a service, execute the
following commands:

20

sudo systemctl enable prometheus
sudo systemctl start prometheus
sudo systemctl status prometheus

To enable and start Alertmanager as a service, execute the following commands:

sudo systemctl enable alertmanager
sudo systemctl start alertmanager
sudo systemctl status alertmanager

Note for packaging (RHEL/CentOS 7)

The service override files must be placed in the relevant drop-in folder to override
the default service files.

/etc/systemd/system/prometheus.service.d/crunchy-prometheus-service.conf
/etc/systemd/system/alertmanager.service.d/crunchy-alertmanager-service.conf

After a daemon-reload, systemd should automatically find these files and the
crunchy services should work as intended.

Setup on RHEL/CentOS 6

Detailed instructions coming soon.

21

	pgmonitor
	pgmonitor is your all-in-one tool to easily create an environment to visualize the health and performance of your PostgreSQL cluster.
	Contents
	Purpose
	Supported Platforms
	Operating Systems
	PostgreSQL

	Installation
	1. Prometheus
	2. exporter
	3. Grafana

	Roadmap
	Version History
	Sponsors
	Legal Notices

	Setting up exporters for pgmonitor
	Installation
	Upgrading
	Installation on RHEL/CentOS 7

	Setup
	Setup on RHEL/CentOS 7
	Running multiple postgres exporters (RHEL / CentOS 7)

	Note for packaging (RHEL/CENTOS 7)
	Installation / Setup on RHEL/CentOS 6
	Running multiple postgres exporters (RHEL / CentOS 6)

	Grafana
	Installation
	Upgrading
	With RPM Packages

	Setup
	Configuration Database
	Datasource & Dashboard Provisioning

	Setting up Prometheus for pgmonitor
	Installation
	Upgrading
	Installation on RHEL/CentOS 7

	Setup
	Setup on RHEL/CentOS 7

	Note for packaging (RHEL/CentOS 7)
	Setup on RHEL/CentOS 6

